Arboretum: Reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules

  1. Aviv Regev1,5,7
  1. 1Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA;
  2. 2Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA;
  3. 3Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02140, USA;
  4. 4School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel;
  5. 5Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02140, USA
    • 6 Present address: Biostatistics and Medical Informatics Department, University of Wisconsin, Madison, Wisconsin 53715, USA.

    Abstract

    Comparative functional genomics studies the evolution of biological processes by analyzing functional data, such as gene expression profiles, across species. A major challenge is to compare profiles collected in a complex phylogeny. Here, we present Arboretum, a novel scalable computational algorithm that integrates expression data from multiple species with species and gene phylogenies to infer modules of coexpressed genes in extant species and their evolutionary histories. We also develop new, generally applicable measures of conservation and divergence in gene regulatory modules to assess the impact of changes in gene content and expression on module evolution. We used Arboretum to study the evolution of the transcriptional response to heat shock in eight species of Ascomycota fungi and to reconstruct modules of the ancestral environmental stress response (ESR). We found substantial conservation in the stress response across species and in the reconstructed components of the ancestral ESR modules. The greatest divergence was in the most induced stress, primarily through module expansion. The divergence of the heat stress response exceeds that observed in the response to glucose depletion in the same species. Arboretum and its associated analyses provide a comprehensive framework to systematically study regulatory evolution of condition-specific responses.

    Footnotes

    • 7 Corresponding authors

      E-mail sroy{at}broadinstitute.org

      E-mail aregev{at}broadinstitute.org

    • [Supplemental material is available for this article.]

    • Article published online before print. Article, supplemental material, and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.146233.112.

    • Received July 22, 2012.
    • Accepted February 27, 2013.

    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.

    | Table of Contents

    Preprint Server